DataSheet.es    


PDF ATmega169 Data sheet ( Hoja de datos )

Número de pieza ATmega169
Descripción 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATmega169 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATmega169 Hoja de datos, Descripción, Manual

Features
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
Non-volatile Program and Data Memories
– 16K bytes of In-System Self-Programmable Flash
Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 bytes EEPROM
Endurance: 100,000 Write/Erase Cycles
– 1K byte Internal SRAM
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– 4 x 25 Segment LCD Driver
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 53 Programmable I/O Lines
– 64-lead TQFP and 64-pad QFN/MLF
Speed Grade:
– ATmega169V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 8 MHz @ 2.7 - 5.5V
– ATmega169: 0 - 8 MHz @ 2.7 - 5.5V, 0 - 16 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
Ultra-Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 350µA
32 kHz, 1.8V: 20µA (including Oscillator)
32 kHz, 1.8V: 40µA (including Oscillator and LCD)
– Power-down Mode:
0.1µA at 1.8V
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
ATmega169V
ATmega169
Notice:
Not recommended in new
designs.
2514P–AVR–07/06

1 page




ATmega169 pdf
Pin Descriptions
VCC
GND
Port A (PA7..PA0)
Port B (PB7..PB0)
Port C (PC7..PC0)
Port D (PD7..PD0)
Port E (PE7..PE0)
Port F (PF7..PF0)
2514P–AVR–07/06
ATmega169/V
Digital supply voltage.
Ground.
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the ATmega169 as listed
on page 62.
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega169 as listed
on page 63.
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port C output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega169 as listed on page
66.
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega169 as listed
on page 68.
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port E output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port E pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the ATmega169 as listed
on page 70.
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used.
Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
5

5 Page





ATmega169 arduino
ATmega169/V
The X-register, Y-register, and The registers R26..R31 have some added functions to their general purpose usage.
Z-register
These registers are 16-bit address pointers for indirect addressing of the data space.
The three indirect address registers X, Y, and Z are defined as described in Figure 5.
Figure 5. The X-, Y-, and Z-registers
X-register
15
7
R27 (0x1B)
XH
07
R26 (0x1A)
XL
0
0
Stack Pointer
Y-register
15
7
R29 (0x1D)
YH
07
R28 (0x1C)
YL
0
0
Z-register
15
7
R31 (0x1F)
ZH
0
7
R30 (0x1E)
ZL
0
0
In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment, and automatic decrement (see the instruction set
reference for details).
The Stack is mainly used for storing temporary data, for storing local variables and for
storing return addresses after interrupts and subroutine calls. The Stack Pointer Regis-
ter always points to the top of the Stack. Note that the Stack is implemented as growing
from higher memory locations to lower memory locations. This implies that a Stack
PUSH command decreases the Stack Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Inter-
rupt Stacks are located. This Stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above 0xFF. The Stack Pointer is decremented by one
when data is pushed onto the Stack with the PUSH instruction, and it is decremented by
two when the return address is pushed onto the Stack with subroutine call or interrupt.
The Stack Pointer is incremented by one when data is popped from the Stack with the
POP instruction, and it is incremented by two when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The num-
ber of bits actually used is implementation dependent. Note that the data space in some
implementations of the AVR architecture is so small that only SPL is needed. In this
case, the SPH Register will not be present.
Bit
Read/Write
Initial Value
15 14 13 12 11 10
9
8
SP10
SP9
SP8
SPH
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL
76543210
R/W R/W R/W R/W R/W R/W R/W R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
00000000
00000000
2514P–AVR–07/06
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATmega169.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATmega168-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATMEGA1618-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATMEGA161L8-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATMEGA1628-Bit AVR MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar