DataSheet.es    


PDF AT49BV1604AT-90CI Data sheet ( Hoja de datos )

Número de pieza AT49BV1604AT-90CI
Descripción 16-megabit 1M x 16/2M x 8 3-volt Only Flash Memory
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de AT49BV1604AT-90CI (archivo pdf) en la parte inferior de esta página.


Total 26 Páginas

No Preview Available ! AT49BV1604AT-90CI Hoja de datos, Descripción, Manual

Features
Single Voltage Read/Write Operation: 2.65V to 3.3V (BV), 3.0V to 3.6V (LV)
Access Time – 70 ns
Sector Erase Architecture
– Thirty-one 32K Word (64K Bytes) Sectors with Individual Write Lockout
– Eight 4K Word (8K Bytes) Sectors with Individual Write Lockout
Fast Word Program Time – 20 µs
Fast Sector Erase Time – 300 ms
Dual-plane Organization, Permitting Concurrent Read while Program/Erase
Memory Plane A: Eight 4K Word and Seven 32K Word Sectors
Memory Plane B: Twenty-four 32K Word Sectors
Erase Suspend Capability
– Supports Reading/Programming Data from Any Sector by Suspending Erase of
Any Different Sector
Low-power Operation
– 30 mA Active
– 10 µA Standby
Data Polling, Toggle Bit, Ready/Busy for End of Program Detection
VPP Pin for Accelerated Program/Erase Operations
RESET Input for Device Initialization
Sector Lockdown Support
TSOP and CBGA Package Options
Top or Bottom Boot Block Configuration Available
128-bit Protection Register
Description
The AT49BV/LV16X4A(T) is a 2.65- to 3.3-volt 16-megabit Flash memory organized
as 1,048,576 words of 16 bits each or 2,097,152 bytes of 8 bits each. The x16 data
appears on I/O0 - I/O15; the x8 data appears on I/O0 - I/O7. The memory is divided
into 39 sectors for erase operations. The device is offered in 48-lead TSOP and
48-ball CBGA packages. The device has CE and OE control signals to avoid any bus
contention. This device can be read or reprogrammed using a single 2.65V power
supply, making it ideally suited for in-system programming.
Pin Configurations
Pin Name Function
A0 - A19
Addresses
CE Chip Enable
OE Output Enable
WE Write Enable
RESET
Reset
RDY/BUSY READY/BUSY Output
VPP
Power Supply for Accelerated Program/Erase Operations
I/O0 - I/O14 Data Inputs/Outputs
I/O15 (A-1) I/O15 (Data Input/Output, Word Mode) A-1 (LSB Address Input, Byte Mode)
BYTE
Selects Byte or Word Mode
NC No Connect
VCCQ
Output Power Supply
16-megabit
(1M x 16/2M x 8)
3-volt Only
Flash Memory
AT49BV1604A
AT49BV1604AT
AT49BV1614A
AT49LV1614A
AT49BV1614AT
AT49LV1614AT
Rev. 1411F–FLASH–03/02
1

1 page




AT49BV1604AT-90CI pdf
Device
Operation
1411FFLASH03/02
AT49BV1604A(T)/1614A(T)
READ: The AT49BV/LV16X4A(T) is accessed like an EPROM. When CE and OE are low and
WE is high, the data stored at the memory location determined by the address pins are
asserted on the outputs. The outputs are put in the high-impedance state whenever CE or OE
is high. This dual-line control gives designers flexibility in preventing bus contention.
COMMAND SEQUENCES: When the device is first powered on it will be reset to the read or
standby mode, depending upon the state of the control line inputs. In order to perform other
device functions, a series of command sequences are entered into the device. The command
sequences are shown in the Command Definitions table (I/O8 - I/O15 are dont care inputs for
the command codes). The command sequences are written by applying a low pulse on the
WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the
falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of
CE or WE. Standard microprocessor write timings are used. The address locations used in the
command sequences are not affected by entering the command sequences.
RESET: A RESET input pin is provided to ease some system applications. When RESET is at
a logic high level, the device is in its standard operating mode. A low level on the RESET input
halts the present device operation and puts the outputs of the device in a high-impedance
state. When a high level is reasserted on the RESET pin, the device returns to the read or
standby mode, depending upon the state of the control inputs.
ERASURE: Before a byte/word can be reprogrammed, it must be erased. The erased state of
memory bits is a logical 1. The entire device can be erased by using the Chip Erase com-
mand or individual sectors can be erased by using the Sector Erase command.
CHIP ERASE: The entire device can be erased at one time by using the six-byte chip erase
software code. After the chip erase has been initiated, the device will internally time the erase
operation so that no external clocks are required. The maximum time to erase the chip is tEC.
If the sector lockdown has been enabled, the chip erase will not erase the data in the sector
that has been locked out; it will erase only the unprotected sectors. After the chip erase, the
device will return to the read or standby mode.
SECTOR ERASE: As an alternative to a full chip erase, the device is organized into 39 sec-
tors (SA0 - SA38) that can be individually erased. The Sector Erase command is a six-bus
cycle operation. The sector address is latched on the falling WE edge of the sixth cycle while
the 30H data input command is latched on the rising edge of WE. The sector erase starts after
the rising edge of WE of the sixth cycle. The erase operation is internally controlled; it will
automatically time to completion. The maximum time to erase a section is tSEC. When the sec-
tor programming lockdown feature is not enabled, the sector will erase (from the same Sector
Erase command). An attempt to erase a sector that has been protected will result in the oper-
ation terminating in 2 µs.
BYTE/WORD PROGRAMMING: Once a memory block is erased, it is programmed (to a logi-
cal 0) on a byte-by-byte or on a word-by-word basis. Programming is accomplished via the
internal device command register and is a four-bus cycle operation. The device will automati-
cally generate the required internal program pulses.
Any commands written to the chip during the embedded programming cycle will be ignored. If
a hardware reset happens during programming, the data at the location being programmed
will be corrupted. Please note that a data 0cannot be programmed back to a 1; only erase
operations can convert 0s to 1s. Programming is completed after the specified tBP cycle
time. The Data Polling feature or the Toggle Bit feature may be used to indicate the end of a
program cycle.
VPP PIN: The circuitry of the AT49BV/LV16X4A(T) is designed so that the device can be pro-
grammed or erased from the VCC power supply or from the VPP input pin. When VPP is less
than or equal to the VCC pin, the device selects the VCC supply for programming and erase
5

5 Page





AT49BV1604AT-90CI arduino
AT49BV1604A(T)/1614A(T)
AT49BV/LV1604AT/1614AT – Sector Address Table
Plane
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
Sector
SA0
SA1
SA2
SA3
SA4
SA5
SA6
SA7
SA8
SA9
SA10
SA11
SA12
SA13
SA14
SA15
SA16
SA17
SA18
SA19
SA20
SA21
SA22
SA23
SA24
SA25
SA26
SA27
SA28
SA29
SA30
SA31
SA32
SA33
SA34
SA35
SA36
SA37
SA38
Size (Bytes/Words)
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
64K/32K
8K/4K
8K/4K
8K/4K
8K/4K
8K/4K
8K/4K
8K/4K
8K/4K
x8
Address Range (A19 - A-1)
000000 - 00FFFF
010000 - 01FFFF
020000 - 02FFFF
030000 - 03FFFF
040000 - 04FFFF
050000 - 05FFFF
060000 - 06FFFF
070000 - 07FFFF
080000 - 08FFFF
090000 - 09FFFF
0A0000 - 0AFFFF
0B0000 - 0BFFFF
0C0000 - 0CFFFF
0D0000 - 0DFFFF
0E0000 - 0EFFFF
0F0000 - 0FFFFF
100000 - 10FFFF
110000 - 11FFFF
120000 - 12FFFF
130000 - 13FFFF
140000 - 14FFFF
150000 - 15FFFF
160000 - 16FFFF
170000 - 17FFFF
180000 - 18FFFF
190000 - 19FFFF
1A0000 - 1AFFFF
1B0000 - 1BFFFF
1C0000 - 1CFFFF
1D0000 - 1DFFFF
1E0000 - 1EFFFF
1F0000 - 1F1FFF
1F2000 - 1F3FFF
1F4000 - 1F5FFF
1F6000 - 1F7FFF
1F8000 - 1F9FFF
1FA000 - 1FBFFF
1FC000 - 1FDFFF
1FE000 - 1FFFFF
1411FFLASH03/02
x16
Address Range (A19 - A0)
00000 - 07FFF
08000 - 0FFFF
10000 - 17FFF
18000 - 1FFFF
20000 - 27FFF
28000 - 2FFFF
30000 - 37FFF
38000 - 3FFFF
40000 - 47FFF
48000 - 4FFFF
50000 - 57FFF
58000 - 5FFFF
60000 - 67FFF
68000 - 6FFFF
70000 - 77FFF
78000 - 7FFFF
80000 - 87FFF
88000 - 8FFFF
90000 - 97FFF
98000 - 9FFFF
A0000 - A7FFF
A8000 - AFFFF
B0000 - B7FFF
B8000 - BFFFF
C0000 - C7FFF
C8000 - CFFFF
D0000 - D7FFF
D8000 - DFFFF
E0000 - E7FFF
E8000 - EFFFF
F0000 - F7FFF
F8000 - F8FFF
F9000 - F9FFF
FA000 - FAFFF
FB000 - FBFFF
FC000 - FCFFF
FD000 - FDFFF
FE000 - FEFFF
FF000 - FFFFF
11

11 Page







PáginasTotal 26 Páginas
PDF Descargar[ Datasheet AT49BV1604AT-90CI.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AT49BV1604AT-90CI16-megabit 1M x 16/2M x 8 3-volt Only Flash MemoryATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar