DataSheet.es    


PDF AD594 Data sheet ( Hoja de datos )

Número de pieza AD594
Descripción Monolithic Thermocouple Amplifiers with Cold Junction Compensation
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de AD594 (archivo pdf) en la parte inferior de esta página.


Total 8 Páginas

No Preview Available ! AD594 Hoja de datos, Descripción, Manual

a
Monolithic Thermocouple Amplifiers
with Cold Junction Compensation
AD594/AD595
FEATURES
Pretrimmed for Type J (AD594) or
Type K (AD595) Thermocouples
Can Be Used with Type T Thermocouple Inputs
Low Impedance Voltage Output: 10 mV/؇C
Built-In Ice Point Compensation
Wide Power Supply Range: +5 V to ؎15 V
Low Power: <1 mW typical
Thermocouple Failure Alarm
Laser Wafer Trimmed to 1؇C Calibration Accuracy
Setpoint Mode Operation
Self-Contained Celsius Thermometer Operation
High Impedance Differential Input
Side-Brazed DIP or Low Cost Cerdip
FUNCTIONAL BLOCK DIAGRAM
–IN –ALM +ALM
14 13 12
AD594/AD595
V+ COMP
11 10
OVERLOAD
DETECT
+A
VO
9
FB
8
GG
ICE
POINT
COMP. –TC
+TC
12 3 4 56 7
+IN +C +T COM –T –C V–
PRODUCT DESCRIPTION
The AD594/AD595 is a complete instrumentation amplifier and
thermocouple cold junction compensator on a monolithic chip.
It combines an ice point reference with a precalibrated amplifier
to produce a high level (10 mV/°C) output directly from a ther-
mocouple signal. Pin-strapping options allow it to be used as a
linear amplifier-compensator or as a switched output setpoint
controller using either fixed or remote setpoint control. It can
be used to amplify its compensation voltage directly, thereby
converting it to a stand-alone Celsius transducer with a low
impedance voltage output.
The AD594/AD595 includes a thermocouple failure alarm that
indicates if one or both thermocouple leads become open. The
alarm output has a flexible format which includes TTL drive
capability.
The AD594/AD595 can be powered from a single ended supply
(including +5 V) and by including a negative supply, tempera-
tures below 0°C can be measured. To minimize self-heating, an
unloaded AD594/AD595 will typically operate with a total sup-
ply current 160 µA, but is also capable of delivering in excess of
± 5 mA to a load.
The AD594 is precalibrated by laser wafer trimming to match
the characteristic of type J (iron-constantan) thermocouples and
the AD595 is laser trimmed for type K (chromel-alumel) inputs.
The temperature transducer voltages and gain control resistors
are available at the package pins so that the circuit can be
recalibrated for the thermocouple types by the addition of two
or three resistors. These terminals also allow more precise cali-
bration for both thermocouple and thermometer applications.
The AD594/AD595 is available in two performance grades. The
C and the A versions have calibration accuracies of ± 1°C and
± 3°C, respectively. Both are designed to be used from 0°C to
+50°C, and are available in 14-pin, hermetically sealed, side-
brazed ceramic DIPs as well as low cost cerdip packages.
PRODUCT HIGHLIGHTS
1. The AD594/AD595 provides cold junction compensation,
amplification, and an output buffer in a single IC package.
2. Compensation, zero, and scale factor are all precalibrated by
laser wafer trimming (LWT) of each IC chip.
3. Flexible pinout provides for operation as a setpoint control-
ler or a stand-alone temperature transducer calibrated in
degrees Celsius.
4. Operation at remote application sites is facilitated by low
quiescent current and a wide supply voltage range +5 V to
dual supplies spanning 30 V.
5. Differential input rejects common-mode noise voltage on the
thermocouple leads.
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1999

1 page




AD594 pdf
AD594/AD595
The AD594/AD595 also includes an input open circuit detector
that switches on an alarm transistor. This transistor is actually a
current-limited output buffer, but can be used up to the limit as
a switch transistor for either pull-up or pull-down operation of
external alarms.
The ice point compensation network has voltages available with
positive and negative temperature coefficients. These voltages
may be used with external resistors to modify the ice point com-
pensation and recalibrate the AD594/AD595 as described in the
next column.
The feedback resistor is separately pinned out so that its value
can be padded with a series resistor, or replaced with an external
resistor between Pins 5 and 9. External availability of the feedback
resistor allows gain to be adjusted, and also permits the AD594/
AD595 to operate in a switching mode for setpoint operation.
CAUTIONS:
The temperature compensation terminals (+C and –C) at Pins 2
and 6 are provided to supply small calibration currents only. The
AD594/AD595 may be permanently damaged if they are
grounded or connected to a low impedance.
The AD594/AD595 is internally frequency compensated for feed-
back ratios (corresponding to normal signal gain) of 75 or more.
If a lower gain is desired, additional frequency compensation
should be added in the form of a 300 pF capacitor from Pin 10
to the output at Pin 9. As shown in Figure 5 an additional 0.01 µF
capacitor between Pins 10 and 11 is recommended.
AD594/ VO 9
AD595
COMP 10
+V 11
300pF
0.01F
Figure 5. Low Gain Frequency Compensation
RECALIBRATION PRINCIPLES AND LIMITATIONS
The ice point compensation network of the AD594/AD595
produces a differential signal which is zero at 0°C and corre-
sponds to the output of an ice referenced thermocouple at the
temperature of the chip. The positive TC output of the circuit is
proportional to Kelvin temperature and appears as a voltage at
+T. It is possible to decrease this signal by loading it with a
resistor from +T to COM, or increase it with a pull-up resistor
from +T to the larger positive TC voltage at +C. Note that
adjustments to +T should be made by measuring the voltage which
tracks it at –T. To avoid destabilizing the feedback amplifier the
measuring instrument should be isolated by a few thousand
ohms in series with the lead connected to –T.
1 +IN
14 –IN
8 FB
AD594/ +T 3
AD595
COM 4
9 VO
–T 5
Figure 6. Decreased Sensitivity Adjustment
Changing the positive TC half of the differential output of the
compensation scheme shifts the zero point away from 0°C. The
zero can be restored by adjusting the current flow into the nega-
tive input of the feedback amplifier, the –T pin. A current into
this terminal can be produced with a resistor between –C and
–T to balance an increase in +T, or a resistor from –T to COM
to offset a decrease in +T.
If the compensation is adjusted substantially to accommodate a
different thermocouple type, its effect on the final output volt-
age will increase or decrease in proportion. To restore the
nominal output to 10 mV/°C the gain may be adjusted to match
the new compensation and thermocouple input characteristics.
When reducing the compensation the resistance between –T
and COM automatically increases the gain to within 0.5% of the
correct value. If a smaller gain is required, however, the nominal
47 kinternal feedback resistor can be paralleled or replaced
with an external resistor.
Fine calibration adjustments will require temperature response
measurements of individual devices to assure accuracy. Major
reconfigurations for other thermocouple types can be achieved
without seriously compromising initial calibration accuracy, so
long as the procedure is done at a fixed temperature using the
factory calibration as a reference. It should be noted that inter-
mediate recalibration conditions may require the use of a
negative supply.
EXAMPLE: TYPE E RECALIBRATION—AD594/AD595
Both the AD594 and AD595 can be configured to condition the
output of a type E (chromel-constantan) thermocouple. Tem-
perature characteristics of type E thermocouples differ less from
type J, than from type K, therefore the AD594 is preferred for
recalibration.
While maintaining the device at a constant temperature follow
the recalibration steps given here. First, measure the device
temperature by tying both inputs to common (or a selected
common-mode potential) and connecting FB to VO. The AD594
is now in the stand alone Celsius thermometer mode. For this
example assume the ambient is 24°C and the initial output VO
is 240 mV. Check the output at VO to verify that it corresponds
to the temperature of the device.
Next, measure the voltage –T at Pin 5 with a high impedance
DVM (capacitance should be isolated by a few thousand ohms
of resistance at the measured terminals). At 24°C the –T voltage
will be about 8.3 mV. To adjust the compensation of an AD594
to a type E thermocouple a resistor, R1, should be connected
between +T and +C, Pins 2 and 3, to raise the voltage at –T by
the ratio of thermocouple sensitivities. The ratio for converting a
type J device to a type E characteristic is:
r (AD594) =(60.9 µV/°C)/(51.7 µV/°C)= 1.18
Thus, multiply the initial voltage measured at –T by r and ex-
perimentally determine the R1 value required to raise –T to that
level. For the example the new –T voltage should be about 9.8 mV.
The resistance value should be approximately 1.8 k.
The zero differential point must now be shifted back to 0°C.
This is accomplished by multiplying the original output voltage
VO by r and adjusting the measured output voltage to this value
by experimentally adding a resistor, R2, between –C and –T,
Pins 5 and 6. The target output value in this case should be
about 283 mV. The resistance value of R2 should be approxi-
mately 240 k.
Finally, the gain must be recalibrated such that the output VO
indicates the device’s temperature once again. Do this by adding
a third resistor, R3, between FB and –T, Pins 8 and 5. VO should
now be back to the initial 240 mV reading. The resistance value
REV. C
–5–

5 Page










PáginasTotal 8 Páginas
PDF Descargar[ Datasheet AD594.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AD590Two-Terminal IC Temperature TransducerAnalog Devices
Analog Devices
AD5902-Wire/ Current Output Temperature TransducerIntersil Corporation
Intersil Corporation
AD590TWO-TERMINAL TEMPERATURE TRANSDUCERSensitron
Sensitron
AD592Low Cost / Precision IC Temperature TransducerAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar