DataSheet.es    


PDF ATMEGA32L Data sheet ( Hoja de datos )

Número de pieza ATMEGA32L
Descripción 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATMEGA32L (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATMEGA32L Hoja de datos, Descripción, Manual

Features
High-performance, Low-power Atmel®AVR® 8-bit Microcontroller
Advanced RISC Architecture
– 131 Powerful Instructions – Most Single-clock Cycle Execution
– 32 × 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16MHz
– On-chip 2-cycle Multiplier
High Endurance Non-volatile Memory segments
– 32Kbytes of In-System Self-programmable Flash program memory
– 1024Bytes EEPROM
– 2Kbytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 Compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
8 Single-ended Channels
7 Differential Channels in TQFP Package Only
2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
– Byte-oriented Two-wire Serial Interface
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated RC Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby
and Extended Standby
I/O and Packages
– 32 Programmable I/O Lines
– 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF
Operating Voltages
– 2.7V - 5.5V for ATmega32L
– 4.5V - 5.5V for ATmega32
Speed Grades
– 0 - 8MHz for ATmega32L
– 0 - 16MHz for ATmega32
Power Consumption at 1MHz, 3V, 25°C
– Active: 1.1mA
– Idle Mode: 0.35mA
– Power-down Mode: < 1µA
8-bit
Microcontroller
with 32KBytes
In-System
Programmable
Flash
ATmega32
ATmega32L
2503Q–AVR–02/11

1 page




ATMEGA32L pdf
ATmega32(L)
Port B (PB7..PB0)
Port C (PC7..PC0)
Port D (PD7..PD0)
RESET
XTAL1
XTAL2
AVCC
AREF
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega32 as listed on page
57.
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins
PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.
The TD0 pin is tri-stated unless TAP states that shift out data are entered.
Port C also serves the functions of the JTAG interface and other special features of the
ATmega32 as listed on page 60.
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega32 as listed on page
62.
Reset Input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page
37. Shorter pulses are not guaranteed to generate a reset.
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.
AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally con-
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.
AREF is the analog reference pin for the A/D Converter.
2503Q–AVR–02/11
5

5 Page





ATMEGA32L arduino
ATmega32(L)
General Purpose
Register File
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
The Register File is optimized for the Atmel®AVR® Enhanced RISC instruction set. In order to
achieve the required performance and flexibility, the following input/output schemes are sup-
ported by the Register File:
• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input
Figure 4 shows the structure of the 32 general purpose working registers in the CPU.
Figure 4. AVR CPU General Purpose Working Registers
General
Purpose
Working
Registers
70
R0
R1
R2
R13
R14
R15
R16
R17
R26
R27
R28
R29
R30
R31
Addr.
$00
$01
$02
$0D
$0E
$0F
$10
$11
$1A
$1B
$1C
$1D
$1E
$1F
X-register Low Byte
X-register High Byte
Y-register Low Byte
Y-register High Byte
Z-register Low Byte
Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.
As shown in Figure 4, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.
2503Q–AVR–02/11
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATMEGA32L.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATMEGA328-bit AVR Microcontroller with 32K Bytes In-System Programmable FlashATMEL Corporation
ATMEL Corporation
ATmega3238-bit Microcontroller with 32K Bytes of In-System Programmable FlashATMEL Corporation
ATMEL Corporation
ATMEGA323L8-bit Microcontroller with 32K Bytes of In-System Programmable FlashATMEL Corporation
ATMEL Corporation
ATMEGA324(ATMEGAxx4) 8-bit MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar