TOP222Y PDF 데이터시트 ( Data , Function )

부품번호 TOP222Y 기능
기능 Three-terminal Off-line PWM Switch
제조업체 Power Integrations Inc.
로고 Power Integrations  Inc. 로고 

이 페이지 하단에 미리보기 및 TOP222Y 다운로드 (pdf 파일) 링크가 있습니다.

전체 20 페이지

No Preview Available !

TOP222Y 데이터시트, 핀배열, 회로
TOPSwitch-®II Family
Three-terminal Off-line PWM Switch
Product Highlights
Lowest cost, lowest component count switcher solution
Cost competitive with linears above 5W
Very low AC/DC losses up to 90% efficiency
Built-in Auto-restart and Current limiting
Latching Thermal shutdown for system level protection
Implements Flyback, Forward, Boost or Buck topology
Works with primary or opto feedback
Stable in discontinuous or continuous conduction mode
Source connected tab for low EMI
Circuit simplicity and Design Tools reduce time to market
The second generation TOPSwitch-II family is more cost
effective and provides several enhancements over the first
generation TOPSwitchfamily. TheTOPSwitch-II family extends
the power range from 100W to 150W for 100/115/230 VAC
input and from 50W to 90W for 85-265 VAC universal input.
This brings TOPSwitch technology advantages to many new
applications, i.e. TV, Monitor, Audio amplifiers, etc. Many
significant circuit enhancements that reduce the sensitivity to
board layout and line transients now make the design even
Figure 1. Typical Flyback Application.
easier. The standard 8L PDIP package option reduces cost in
lower power, high efficiency applications. The internal lead
frame of this package uses six of its pins to transfer heat from
the chip directly to the board, eliminating the cost of a heat sink.
TOPSwitch incorporates all functions necessary for a switched
mode control system into a three terminal monolithic IC: power
MOSFET, PWM controller, high voltage start up circuit, loop
compensation and fault protection circuitry.
TO-220 (Y) Package1
PART Single Voltage Input3
ORDER 100/115/230 VAC ±15%
P 4,6
Wide Range Input
85 to 265 VAC
P 4,6
12 W
8L PDIP (P) or 8L SMD (G) Package2
Single Voltage. Input3
100/115/230 VAC ±15%
P 5,6
Wide Range Input
85 to 265 VAC
P 5,6
TOP221P or TOP221G
25 W
15 W
TOP222P or TOP222G
15 W
10 W
50 W
30 W
TOP223P or TOP223G
25 W
15 W
75 W
45 W
TOP224P or TOP224G
30 W
20 W
100 W
60 W
125 W
75 W
150 W
90 W
Notes: 1. Package outline: TO-220/3 2. Package Outline: DIP-8 or SMD-8 3. 100/115 VAC with doubler input 4. Assumes appropriate
heat sinking to keep the maximum TOPSwitch junction temperature below 100 °C. 5. Soldered to 1 sq. in.( 6.45 cm2), 2 oz. copper clad
(610 gm/m2) 6. PMAX is the maximum practical continuous power output level for conditions shown. The continuous power capability
in a given application depends on thermal environment, transformer design, efficiency required, minimum specified input voltage, input
storage capacitance, etc. 7. Refer to key application considerations section when using TOPSwitch-II in an existing TOPSwitch design.
July 2001

TOP222Y pdf, 반도체, 판매, 대치품
TOPSwitch-II Family Functional Description (cont.)
Control Voltage Supply
CONTROL pin voltage VC is the supply or bias voltage for the
controller and driver circuitry. An external bypass capacitor
closely connected between the CONTROL and SOURCE pins
is required to supply the gate drive current. The total amount
of capacitance connected to this pin (CT) also sets the auto-
restart timing as well as control loop compensation. VC is
regulated in either of two modes of operation. Hysteretic
regulation is used for initial start-up and overload operation.
Shunt regulation is used to separate the duty cycle error signal
from the control circuit supply current. During start-up,
CONTROL pin current is supplied from a high-voltage switched
current source connected internally between the DRAIN and
CONTROL pins. The current source provides sufficient current
to supply the control circuitry as well as charge the total
external capacitance (C ).
The first time V reaches the upper threshold, the high-voltage
current source is turned off and the PWM modulator and output
transistor are activated, as shown in Figure 5(a). During normal
operation (when the output voltage is regulated) feedback
control current supplies the VC supply current. The shunt
regulator keeps VC at typically 5.7 V by shunting CONTROL
pin feedback current exceeding the required DC supply current
through the PWM error signal sense resistor RE. The low
dynamic impedance of this pin (Z ) sets the gain of the error
amplifier when used in a primary feedback configuration. The
dynamic impedance of the CONTROL pin together with the
external resistance and capacitance determines the control loop
compensation of the power system.
If the CONTROL pin total external capacitance (CT) should
discharge to the lower threshold, the output MOSFET is turned
off and the control circuit is placed in a low-current standby
mode. The high-voltage current source turns on and charges the
external capacitance again. Charging current is shown with a
negative polarity and discharging current is shown with a
positive polarity in Figure 6. The hysteretic auto-restart
comparator keeps VC within a window of typically 4.7 to 5.7 V
by turning the high-voltage current source on and off as shown
in Figure 5(b). The auto-restart circuit has a divide-by-8
counter which prevents the output MOSFET from turning on
again until eight discharge-charge cycles have elapsed. The
counter effectively limits TOPSwitch power dissipation by
reducing the auto-restart duty cycle to typically 5%. Auto-
restart continues to cycle until output voltage regulation is
again achieved.
Bandgap Reference
All critical TOPSwitch internal voltages are derived from a
temperature-compensated bandgap reference. This reference
is also used to generate a temperature-compensated current
source which is trimmed to accurately set the oscillator frequency
and MOSFET gate drive current.
The internal oscillator linearly charges and discharges the
internal capacitance between two voltage levels to create a
sawtooth waveform for the pulse width modulator. The oscillator
sets the pulse width modulator/current limit latch at the beginning
of each cycle. The nominal frequency of 100 kHz was chosen
to minimize EMI and maximize efficiency in power supply
applications. Trimming of the current reference improves the
frequency accuracy.
Pulse Width Modulator
The pulse width modulator implements a voltage-mode control
loop by driving the output MOSFET with a duty cycle inversely
proportional to the current into the CONTROL pin which
generates a voltage error signal across RE. The error signal
across R is filtered by an RC network with a typical corner
frequency of 7 kHz to reduce the effect of switching noise. The
filtered error signal is compared with the internal oscillator
sawtooth waveform to generate the duty cycle waveform. As
the control current increases, the duty cycle decreases. A clock
signal from the oscillator sets a latch which turns on the output
MOSFET. The pulse width modulator resets the latch, turning
off the output MOSFET. The maximum duty cycle is set by the
symmetry of the internal oscillator. The modulator has a
minimum ON-time to keep the current consumption of the
TOPSwitch independent of the error signal. Note that a minimum
current must be driven into the CONTROL pin before the duty
cycle begins to change.
Gate Driver
The gate driver is designed to turn the output MOSFET on at a
controlled rate to minimize common-mode EMI. The gate drive
current is trimmed for improved accuracy.
Error Amplifier
The shunt regulator can also perform the function of an error
amplifier in primary feedback applications. The shunt regulator
voltage is accurately derived from the temperature compensated
bandgap reference. The gain of the error amplifier is set by the
CONTROL pin dynamic impedance. The CONTROL pin
clamps external circuit signals to the VC voltage level. The
CONTROL pin current in excess of the supply current is
separated by the shunt regulator and flows through RE as a
voltage error signal.
Cycle-By-Cycle Current Limit
The cycle by cycle peak drain current limit circuit uses the
output MOSFET ON-resistance as a sense resistor. A current
limit comparator compares the output MOSFET ON-state drain-
source voltage, V with a threshold voltage. High drain
current causes VDS(ON) to exceed the threshold voltage and turns
the output MOSFET off until the start of the next clock cycle.
The current limit comparator threshold voltage is temperature


TOP222Y 전자부품, 판매, 대치품
22 mH
0.1 µF
250 VAC
400 V
47 µF
400 V
J1 3.15 A
S 6.8
47 µF
330 µF
35 V
3.3 µH
220 µF
35 V
0.1 µF
+12 V
1 nF
250 VAC
11 V
Figure 8. Schematic Diagram of a 20 W Universal Input TOPSwitch-II Power Supply using an 8 lead PDIP.
20 W Universal Supply using 8 Lead PDIP
Figure 8 shows a 12 V, 20 W secondary regulated flyback power
supply using the TOP224P in an eight lead PDIP package and
operating from universal 85 to 265 VAC input voltage. This
example demonstrates the advantage of the higher power 8 pin
leadframe used with the TOPSwitch-II family. This low cost
package transfers heat directly to the board through six source
pins, eliminating the heatsink and the associated cost. Efficiency
is typically 80% at low line input. Output voltage is directly
sensed by optocoupler U2 and Zener diode VR2. The output
voltage is determined by the Zener diode (VR2) voltage and the
voltage drops across the optocoupler (U2) LED and resistor R1.
Other output voltages are possible by adjusting the transformer
turns ratio and value of Zener diode VR2.
AC power is rectified and filtered by BR1 and C1 to create the
high voltage DC bus applied to the primary winding of T1. The
other side of the transformer primary is driven by the integrated
TOPSwitch-II high-voltage MOSFET. D1 and VR1 clamp
leading-edge voltage spikes caused by transformer leakage
inductance. The power secondary winding is rectified and
filtered by D2, C2, L1, and C3 to create the 12 V output voltage.
R2 and VR2 provide a slight pre-load on the 12 V output to
improve load regulation at light loads. The bias winding is
rectified and filtered by D3 and C4 to create a TOPSwitch bias
voltage. L2 and Y1-safety capacitor C7 attenuate common
mode emission currents caused by high voltage switching
waveforms on the DRAIN side of the primary winding and the
primary to secondary capacitance. Leakage inductance of L2
with C1 and C6 attenuates differential-mode emission currents
caused by the fundamental and harmonics of the trapezoidal or
triangular primary current waveform. C5 filters internal
MOSFET gate drive charge current spikes on the CONTROL
pin, determines the auto-restart frequency, and together with
R1 and R3, compensates the control loop.


구       성총 20 페이지
다운로드[ TOP222Y.PDF 데이터시트 ]

구매 문의
일반 IC 문의 : 샘플 및 소량 구매

전력 반도체 판매 ( IGBT, TR 모듈, SCR, 다이오드 모듈 )

상호 : 아이지 인터내셔날

사이트 방문 : [ 홈페이지 ] [ 블로그 1 ] [ 블로그 2 ]


관련 데이터시트

부품번호상세설명 및 기능제조사

Three-terminal Off-line PWM Switch

Power Integrations  Inc.
Power Integrations Inc.

Three-Terminal Off-Line PWM Switch

Power Integrations
Power Integrations    |   2020   |  연락처   |  링크모음   |   검색  |   사이트맵