DataSheet39.com

What is 93C86?

This electronic component, produced by the manufacturer "Microchip Technology", performs the same function as "8K/16K 5.0V Microwire Serial EEPROM".


93C86 Datasheet PDF - Microchip Technology

Part Number 93C86
Description 8K/16K 5.0V Microwire Serial EEPROM
Manufacturers Microchip Technology 
Logo Microchip Technology Logo 


There is a preview and 93C86 download ( pdf file ) link at the bottom of this page.





Total 20 Pages



Preview 1 page

No Preview Available ! 93C86 datasheet, circuit

Not recommended for new designs –
Please use 93LC76C or 93LC86C.
93C76/86
8K/16K 5.0V Microwire Serial EEPROM
Features:
• Single 5.0V supply
• Low-power CMOS technology
- 1 mA active current typical
• ORG pin selectable memory configuration
1024 x 8- or 512 x 16-bit organization (93C76)
2048 x 8- or 1024 x 16-bit organization (93C86)
• Self-timed erase and write cycles
(including auto-erase)
• Automatic ERAL before WRAL
• Power on/off data protection circuitry
• Industry standard 3-wire serial I/O
• Device status signal during erase/write cycles
• Sequential read function
• 1,000,000 erase/write cycles ensured
• Data retention > 200 years
• 8-pin PDIP/SOIC package
• Temperature ranges supported
- Commercial (C):
- Industrial (I):
- Automotive (E)
0°C to +70°C
-40°C to +85°C
-40°C to +125°C
Description:
The Microchip Technology Inc. 93C76/86 are 8K and
16K low voltage serial Electrically Erasable PROMs.
The device memory is configured as x8 or x16 bits
depending on the ORG pin setup. Advanced CMOS
technology makes these devices ideal for low power
nonvolatile memory applications. These devices also
have a Program Enable (PE) pin to allow the user to
write protect the entire contents of the memory array.
The 93C76/86 is available in standard 8-pin PDIP and
8-pin surface mount SOIC packages.
Package Types
PDIP Package
CS 1
CLK 2
DI 3
DO 4
SOIC Package
CS 1
CLK 2
DI 3
DO 4
8 VCC
7 PE
6 ORG
5 VSS
8 VCC
7 PE
6 ORG
5 VSS
Block Diagram
VCC VSS
Memory
Array
Data
Register
DI
Mode
PE Decode
CS Logic
Address
Decoder
Address
Counter
Output
Buffer
DO
CLK
Clock
Generator
1996-2012 Microchip Technology Inc.
DS21132F-page 1

line_dark_gray
93C86 equivalent
2.0 PRINCIPLES OF OPERATION
When the ORG pin is connected to VCC, the x16 orga-
nization is selected. When it is connected to ground,
the x8 organization is selected. Instructions, addresses
and write data are clocked into the DI pin on the rising
edge of the clock (CLK). The DO pin is normally held in
a high-Z state except when reading data from the
device, or when checking the Ready/Busy status
during a programming operation. The Ready/Busy
status can be verified during an erase/write operation
by polling the DO pin; DO low indicates that program-
ming is still in progress, while DO high indicates the
device is ready. The DO will enter the high-impedance
state on the falling edge of the CS.
2.1 Start Condition
The Start bit is detected by the device if CS and DI are
both high with respect to the positive edge of CLK for
the first time.
Before a Start condition is detected, CS, CLK and DI
may change in any combination (except to that of a
Start condition), without resulting in any device opera-
tion (Read, Write, Erase, EWEN, EWDS, ERAL and
WRAL). As soon as CS is high, the device is no longer
in the Standby mode.
An instruction following a Start condition will only be
executed if the required amount of opcode, address
and data bits for any particular instruction are clocked
in.
After execution of an instruction (i.e., clock in or out of
the last required address or data bit) CLK and DI
become “don't care” bits until a new Start condition is
detected.
2.2 DI/DO
It is possible to connect the Data In and Data Out pins
together. However, with this configuration it is possible
for a “bus conflict” to occur during the “dummy zero”
that precedes the read operation, if A0 is a logic high
level. Under such a condition the voltage level seen at
Data Out is undefined and will depend upon the relative
impedances of Data Out and the signal source driving
A0. The higher the current sourcing capability of A0,
the higher the voltage at the Data Out pin.
93C76/86
2.3 Erase/Write Enable and Disable
(EWEN, EWDS)
The 93C76/86 powers up in the Erase/Write Disable
(EWDS) state. All programming modes must be
preceded by an Erase/Write Enable (EWEN) instruction.
Once the EWEN instruction is executed, programming
remains enabled until an EWDS instruction is executed
or VCC is removed from the device. To protect against
accidental data disturb, the EWDS instruction can be
used to disable all erase/write functions and should
follow all programming operations. Execution of a READ
instruction is independent of both the EWEN and EWDS
instructions.
2.4 Data Protection
During power-up, all programming modes of operation
are inhibited until VCC has reached a level greater than
1.4V. During power-down, the source data protection
circuitry acts to inhibit all programming modes when
VCC has fallen below 1.4V.
The EWEN and EWDS commands give additional
protection against accidentally programming during
normal operation.
After power-up, the device is automatically in the
EWDS mode. Therefore, an EWEN instruction must be
performed before any ERASE or WRITE instruction can
be executed.
1996-2012 Microchip Technology Inc.
DS21132F-page 5


line_dark_gray

Preview 5 Page


Part Details

On this page, you can learn information such as the schematic, equivalent, pinout, replacement, circuit, and manual for 93C86 electronic component.


Information Total 20 Pages
Link URL [ Copy URL to Clipboard ]
Download [ 93C86.PDF Datasheet ]

Share Link :

Electronic Components Distributor


An electronic components distributor is a company that sources, stocks, and sells electronic components to manufacturers, engineers, and hobbyists.


SparkFun Electronics Allied Electronics DigiKey Electronics Arrow Electronics
Mouser Electronics Adafruit Newark Chip One Stop


Featured Datasheets

Part NumberDescriptionMFRS
93C86The function is 8K/16K 5.0V Microwire Serial EEPROM. Microchip TechnologyMicrochip Technology

Semiconductors commonly used in industry:

1N4148   |   BAW56   |   1N5400   |   NE555   |  

LM324   |   BC327   |   IRF840  |   2N3904   |  



Quick jump to:

93C8     1N4     2N2     2SA     2SC     74H     BC     HCF     IRF     KA    

LA     LM     MC     NE     ST     STK     TDA     TL     UA    



Privacy Policy   |    Contact Us     |    New    |    Search