DataSheet.es    


PDF ATMEGA169P Data sheet ( Hoja de datos )

Número de pieza ATMEGA169P
Descripción 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATMEGA169P (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATMEGA169P Hoja de datos, Descripción, Manual

Features
High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller
Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 × 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
– On-Chip 2-cycle Multiplier
High Endurance Non-volatile Memory segments
– 16 Kbytes of In-System Self-programmable Flash program memory
– 512 Bytes EEPROM
– 1 Kbytes Internal SRAM
– Write/Erase cycles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– 4 × 25 Segment LCD Driver
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 54 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN
Speed Grade:
– ATmega169PV: 0 - 4 MHz @ 1.8V - 5.5V, 0 - 8 MHz @ 2.7V - 5.5V
– ATmega169P: 0 - 8 MHz @ 2.7V - 5.5V, 0 - 16 MHz @ 4.5V - 5.5V
Temperature range:
– -40°C to 85°C Industrial
Ultra-Low Power Consumption
– Active Mode:
1 MHz, 1.8V: 330 µA
32 kHz, 1.8V: 10 µA (including Oscillator)
32 kHz, 1.8V: 25 µA (including Oscillator and LCD)
– Power-down Mode:
0.1 µA at 1.8V
– Power-save Mode:
0.6 µA at 1.8V (Including 32 kHz RTC)
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
ATmega169P
ATmega169PV
Preliminary
Rev. 8018P–AVR–08/10

1 page




ATMEGA169P pdf
ATmega169P
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
The ATmega169P provides the following features: 16 Kbytes of In-System Programmable Flash
with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O
lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip
Debugging support and programming, a complete On-chip LCD controller with internal step-up
voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a
serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-
channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial
port, and five software selectable power saving modes. The Idle mode stops the CPU while
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip
functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous
timer and the LCD controller continues to run, allowing the user to maintain a timer base and
operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction
mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC,
to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator
Oscillator is running while the rest of the device is sleeping. This allows very fast start-up com-
bined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-
gram running on the AVR core. The Boot program can use any interface to download the
application program in the Application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flex-
ible and cost effective solution to many embedded control applications.
The ATmega169P AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
8018P–AVR–08/10
5

5 Page





ATMEGA169P arduino
ATmega169P
6. AVR CPU Core
6.1 Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.
6.2 Architectural Overview
Figure 6-1. Block Diagram of the AVR Architecture
Flash
Program
Memory
Instruction
Register
Instruction
Decoder
Control Lines
Program
Counter
Data Bus 8-bit
Status
and Control
32 x 8
General
Purpose
Registrers
ALU
Interrupt
Unit
SPI
Unit
Watchdog
Timer
Analog
Comparator
Data
SRAM
EEPROM
I/O Module1
I/O Module 2
I/O Module n
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
8018P–AVR–08/10
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATMEGA169P.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATmega1698-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATmega169A8-bit Atmel MicrocontrollerATMEL Corporation
ATMEL Corporation
ATmega169L8-bit AVR Microcontroller with 16K Bytes In-System Programmable FlashATMEL Corporation
ATMEL Corporation
ATMEGA169P8-bit MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar