Datasheet.kr   

AN1118 데이터시트 PDF




ST Microelectronics에서 제조한 전자 부품 AN1118은 전자 산업 및 응용 분야에서
광범위하게 사용되는 반도체 소자입니다.


 

PDF 형식의 AN1118 자료 제공

부품번호 AN1118 기능
기능 THE END OF THE EMULATION COMPROMISE
제조업체 ST Microelectronics
로고 ST Microelectronics 로고


AN1118 데이터시트 를 다운로드하여 반도체의 전기적 특성과 매개변수에 대해 알아보세요.




전체 3 페이지수

미리보기를 사용할 수 없습니다

AN1118 데이터시트, 핀배열, 회로
AN1118
APPLICATION NOTE
FLASH+: The End of the Emulation Compromise
Designers are constantly under pressure to reduce the size of printed circuit boards, and are frequently
faced with the EEPROM emulation dilemma: in a system that requires both Flash and EEPROM memory
functions, is it necessary to use separate EEPROM and Flash memory chips? In theory the answer is ‘no’
because with appropriate software part of the Flash memory can be made to emulate an EEPROM. in
practice, however, the benefits of this approach are often outweighed by severe performance penalties.
www.DataSAhneeet4xUc.ictoinmg new memory concept promises to end this dilemma once and for all by allowing EEPROM
functionality to be selectively added to a Flash memory array - a major breakthrough as the Flash cell
structure is much more cost-effective than conventional EEPROM technology. STMicroelectronics has ful-
ly industrialised the concept, and manufactures products that combine 2, 4 or 8 Mbit of Flash memory and
64 or 256 Kbit of EEPROM on the same chip.
The new memory concept is called FLASH+. Using essentially the same process that is used for standard
Flash memories, FLASH+ allows a hardware emulation of the EEPROM function to be performed. This
uses a double metal process that is only a little more complex than the standard single metal EEPROM
process, but allows much smaller cell sizes to be used. However, the benefits of FLASH+ go much further
because the EEPROM functionality can be selectively implemented on the die, resulting in a device that
combines a conventional Flash memory and a full-featured EEPROM on the same chip.
Before this breakthrough, designers who needed Flash and EEPROM in their systems either had to ac-
cept the cost and space overheads of using two separate devices or had to use a software emulation tech-
nique to simulate the EEPROM in a Flash memory.
The software emulation technique was developed to get round the fact that a Flash cell can only be pro-
grammed once between sector-erase cycles. If the application stored parameters and variables in fixed
Flash locations, the Flash sector would have to be erased every time a variable changed value - and with
sector erase times being typically more than one second, this would slow down performance intolerably.
The solution was to write each new parameter value in a fresh Flash location and to maintain a string of
address pointers to allow the latest value to be found. When the sector is full, the latest values are copied
across to a second sector, and the first sector is erased ready to start the process again.
This approach is very straightforward, but the first software emulations to adopt this approach suffered
from the major disadvantage that the microprocessor could not read its program code from the Flash
memory while a sector was being erased. Amongst other effects, this gave a worst-case interrupt re-
sponse time of over a second. Newer Flash architectures such as “Fast Suspend to Read” and “Simulta-
neous Read/Write” have greatly reduced the interrupt latency problem, but still cannot address the most
important disadvantage of software emulation, which is the large and unpredictable access time and the
corresponding increase in power consumption.
REMOVING THE LONG AND UNPREDICTABLE ACCESS TIMES
When the processor wants to access a parameter stored in “simulated EEPROM”, it has to begin at the
initial location and follow the chain of address pointers, tracing through every updated value until it reaches
the current one (the one most recently written). Depending on the number of parameters, and the average
February 1999
1/3





구       성 총 3 페이지수
다운로드[ AN1118.PDF 데이터시트 ]

당사 플랫폼은 키워드, 제품 이름 또는 부품 번호를 사용하여 검색할 수 있는

포괄적인 데이터시트를 제공합니다.


구매 문의
일반 IC 문의 : 샘플 및 소량 구매
-----------------------------------------------------------------------

IGBT, TR 모듈, SCR 및 다이오드 모듈을 포함한
광범위한 전력 반도체를 판매합니다.

전력 반도체 전문업체

상호 : 아이지 인터내셔날

사이트 방문 :     [ 홈페이지 ]     [ 블로그 1 ]     [ 블로그 2 ]



관련 데이터시트

부품번호상세설명 및 기능제조사
AN111

Balanced Summing Amplifier

Analog Devices
Analog Devices
AN111

Using the Xicor 16K to 64K Supervisory EEPROMs

Xicor
Xicor

DataSheet.kr       |      2020   |     연락처      |     링크모음      |      검색     |      사이트맵