Datasheet.kr   

TNY263 데이터시트 PDF




Power Integrations에서 제조한 전자 부품 TNY263은 전자 산업 및 응용 분야에서
광범위하게 사용되는 반도체 소자입니다.


PDF 형식의 TNY263 자료 제공

부품번호 TNY263 기능
기능 Low Power Off-line Switcher
제조업체 Power Integrations
로고 Power Integrations 로고


TNY263 데이터시트 를 다운로드하여 반도체의 전기적 특성과 매개변수에 대해 알아보세요.




전체 24 페이지수

미리보기를 사용할 수 없습니다

TNY263 데이터시트, 핀배열, 회로
TNY263-268
TinySwitch®-II Family
Enhanced, Energy Efficient,
Low Power Off-line Switcher
Product Highlights
TinySwitch-II Features Reduce System Cost
• Fully integrated auto-restart for short circuit and open
loop fault protection – saves external component costs
• Built-in circuitry practically eliminates audible noise with
ordinary dip-varnished transformer
• Programmable line under-voltage detect feature prevents
power on/off glitches – saves external components
• Frequency jittering dramatically reduces EMI (~10 dB)
– minimizes EMI filter component costs
• 132 kHz operation reduces transformer size – allows use
of EF12.6 or EE13 cores for low cost and small size
• Very tight tolerances and negligible temperature variation
on key parameters eases design and lowers cost
• Lowest component count switcher solution
• Expanded scalable device family for low system cost
Better Cost/Performance over RCC & Linears
• Lower system cost than RCC, discrete PWM and other
integrated/hybrid solutions
• Cost effective replacement for bulky regulated linears
• Simple ON/OFF control – no loop compensation needed
• No bias winding – simpler, lower cost transformer
• Simple design practically eliminates rework in
manufacturing
EcoSmart®– Extremely Energy Efficient
• No load consumption <50 mW with bias winding and
<250 mW without bias winding at 265 VAC input
• Meets California Energy Commission (CEC), Energy
Star, and EU requirements
• Ideal for cell-phone charger and PC standby applications
High Performance at Low Cost
• High voltage powered – ideal for charger applications
• High bandwidth provides fast turn on with no overshoot
• Current limit operation rejects line frequency ripple
• Built-in current limit and thermal protection improves
safety
Description
TinySwitch-II integrates a 700 V power MOSFET, oscillator,
high voltage switched current source, current limit and
thermal shutdown circuitry onto a monolithic device. The
start-up and operating power are derived directly from
the voltage on the DRAIN pin, eliminating the need for
a bias winding and associated circuitry. In addition, the
+
Optional
UV Resistor
Wide-Range
HV DC Input
D EN/UV
TinySwitch-II
BP
S
-
Figure 1. Typical Standby Application.
+
DC Output
-
PI-2684-101700
OUTPUT POWER TABLE
PRODUCT3
230 VAC ±15%
85-265 VAC
Adapter1
Open
Frame2
Adapter1
Open
Frame2
TNY263 P or G 5 W 7.5 W 3.7 W 4.7 W
TNY264 P or G 5.5 W 9 W 4 W 6 W
TNY265 P or G 8.5 W 11 W 5.5 W 7.5 W
TNY266 P or G 10 W 15 W 6 W 9.5 W
TNY267 P or G 13 W 19 W 8 W 12 W
TNY268 P or G 16 W 23 W 10 W 15 W
Table 1. Notes: 1. Minimum continuous power in a typical
non-ventilated enclosed adapter measured at 50 °C ambient.
2. Minimum practical continuous power in an open frame
design with adequate heat sinking, measured at 50 °C
ambient (See Key Applications Considerations). 3. Packages:
P: DIP-8B, G: SMD-8B. For lead-free package options, see Part
Ordering Information.
TinySwitch-II devices incorporate auto-restart, line under-
voltage sense, and frequency jittering. An innovative design
minimizes audio frequency components in the simple ON/OFF
control scheme to practically eliminate audible noise with
standard taped/varnished transformer construction. The fully
integrated auto-restart circuit safely limits output power during
fault conditions such as output short circuit or open loop,
reducing component count and secondary feedback circuitry
cost. An optional line sense resistor externally programs a line
under-voltage threshold, which eliminates power down glitches
caused by the slow discharge of input storage capacitors present
in applications such as standby supplies.The operating frequency
of 132 kHz is jittered to significantly reduce both the quasi-peak
and average EMI, minimizing filtering cost.
April 2005
http://www.Datasheet4U.com




TNY263 pdf, 반도체, 판매, 대치품
TNY263-268
70 °C (typical) is provided to prevent overheating of the PC
board due to a continuous fault condition.
Current Limit
The current limit circuit senses the current in the power MOSFET.
When
power
this current
MOSFET is
exceeds the
turned off for
tihneterrenmaal itnhdreersohfotlhda(tIcLyIMcIlTe).,Tthhee
current limit state machine reduces the current limit threshold
by discrete amounts under medium and light loads.
The leading edge blanking circuit inhibits the current limit
comparator for
turned on. This
alesahdoinrtgteimdgee(btLlEaBn)kaifntgertitmhee
power MOSFET is
has been set so that
current spikes caused by capacitance and secondary-side rectifier
reverse recovery time will not cause premature termination of
the switching pulse.
Auto-Restart
In the event of a fault condition such as output overload, output
short circuit, or an open loop condition, TinySwitch-II enters
into auto-restart operation. An internal counter clocked by the
oscillator gets reset every time the EN/UV pin is pulled low. If
the EN/UV pin is not pulled low for 50 ms, the power MOSFET
switching is normally disabled for 850 ms (except in the case of
line under-voltage condition, in which case it is disabled until
the condition is removed). The auto-restart alternately enables
and disables the switching of the power MOSFET until the fault
condition is removed. Figure 5 illustrates auto-restart circuit
operation in the presence of an output short circuit.
In the event of a line under-voltage condition, the switching
of the power MOSFET is disabled beyond its normal 850 ms
time until the line under-voltage condition ends.
300
V
DRAIN
200
100
0
10
V
5 DC-OUTPUT
0
0 1000
Time (ms)
Figure 5. TinySwitch-II Auto-Restart Operation.
2000
Line Under-Voltage Sense Circuit
The DC line voltage can be monitored by connecting an external
resistor from the DC line to the EN/UV pin. During power-up
or when the switching of the power MOSFET is disabled in
auto-restart, the current into the EN/UV pin must exceed 49 µA
to initiate switching of the power MOSFET. During power-up,
this is accomplished by holding the BYPASS pin to 4.8 V while
the line under-voltage condition exists. The BYPASS pin then
rises from 4.8 V to 5.8 V when the line under-voltage condition
goes away. When the switching of the power MOSFET is
disabled in auto-restart mode and a line under-voltage condition
exists, the auto-restart counter is stopped. This stretches the
disable time beyond its normal 850 ms until the line under-
voltage condition ends.
The line under-voltage circuit also detects when there is
no external resistor connected to the EN/UV pin (less than
~ 2 µA into the pin). In this case the line under-voltage function
is disabled.
TinySwitch-II Operation
TinySwitch-II devices operate in the current limit mode. When
enabled, the oscillator turns the power MOSFET on at the
beginning of each cycle. The MOSFET is turned off when the
rceuarcrehnetdr.aSminpcseutphteohtihgehceustrrceunrtrleinmtiltimoriwt lheevnelthanedDfCreMqAuXelnimcyitoisf
a TinySwitch-II design are constant, the power delivered to the
load is proportional to the primary inductance of the transformer
and peak primary current squared. Hence, designing the supply
involves calculating the primary inductance of the transformer
for the maximum output power required. If the TinySwitch-II
is appropriately chosen for the power level, the current in the
calculated inductance will ramp up to current limit before the
DCMAX limit is reached.
Enable Function
TinySwitch-II senses the EN/UV pin to determine whether or not
to proceed with the next switching cycle as described earlier.
The sequence of cycles is used to determine the current limit.
Once a cycle is started, it always completes the cycle (even when
the EN/UV pin changes state half way through the cycle). This
operation results in a power supply in which the output voltage
ripple is determined by the output capacitor, amount of energy
per switch cycle and the delay of the feedback.
The EN/UV pin signal is generated on the secondary by
comparing the power supply output voltage with a reference
voltage. The EN/UV pin signal is high when the power supply
output voltage is less than the reference voltage.
In a typical implementation, the EN/UV pin is driven by an
optocoupler. The collector of the optocoupler transistor is
connected to the EN/UV pin and the emitter is connected to
4G
4/05

4페이지










TNY263 전자부품, 판매, 대치품
TNY263-268
D1
1N4005 D2
1N4005
85-265
VAC
RF1
8.2
Fusible
C1
3.3 µF
400 V
D3 D4
1N4005 1N4005
R2
200 k
C3
2.2 nF
C8 680 pF
Y1 Safety
Shield
T1
D5
1N5819
18
45
R1
1.2 k
L1
2.2 mH
C2
3.3 µF
400 V
D6
1N4937
U1 D
TNY264
TinySwitch-II
S
U2
LTV817
EN/UV
BP
C3
0.1 µF
R9
47
Q1
2N3904
C7
10 µF
10 V
C5
330 µF
16 V
R7
100
L2
3.3 µH
C6
100 µF
35 V
R8
270
R3
22
VR1
BZX79-
B3V9
3.9 V
R4 R6
1.2 1
1/2 W 1/2 W
Figure 14. 2.5 W Constant Voltage, Constant Current Battery Charger with Universal Input (85-265 VAC).
+5V
500 mA
RTN
PI-2706-080404
The TinySwitch-II does not require a bias winding to provide
power to the chip, because it draws the power directly from
the DRAIN pin (see Functional Description above). This
has two main benefits. First, for a nominal application, this
eliminates the cost of a bias winding and associated components.
Secondly, for battery charger applications, the current-voltage
characteristic often allows the output voltage to fall close to
zero volts while still delivering power. This type of application
normally requires a forward-bias winding which has many
more associated components. With TinySwitch-II, neither are
necessary. For applications that require a very low no-load power
consumption (50 mW), a resistor from a bias winding to the
BYPASS pin can provide the power to the chip. The minimum
recommended current supplied is 750 µA. The BYPASS pin in
this case will be clamped at 6.3 V. This method will eliminate the
power draw from the DRAIN pin, thereby reducing the no-load
power consumption and improving full-load efficiency.
Current Limit Operation
Each switching cycle is terminated when the DRAIN current
reaches the current limit of the TinySwitch-II. Current limit
operation provides good line ripple rejection and relatively
constant power delivery independent of input voltage.
BYPASS Pin Capacitor
The BYPASS pin uses a small 0.1 µF ceramic capacitor for
decoupling the internal power supply of the TinySwitch-II.
Application Examples
The TinySwitch-II is ideal for low cost, high efficiency power
supplies in a wide range of applications such as cellular phone
chargers, PC standby, TV standby, AC adapters, motor control,
appliance control and ISDN or a DSL network termination.
The 132 kHz operation allows the use of a low cost EE13 or
EF12.6 core transformer while still providing good efficiency.
The frequency jitter in TinySwitch-II makes it possible to use a
single inductor (or two small resistors for under 3 W applications
if lower efficiency is acceptable) in conjunction with two input
capacitors for input EMI filtering. The auto-restart function
removes the need to oversize the output diode for short circuit
conditions allowing the design to be optimized for low cost
and maximum efficiency. In charger applications, it eliminates
the need for a second optocoupler and Zener diode for open
loop fault protection. Auto-restart also saves the cost of adding
a fuse or increasing the power rating of the current sense
resistors to survive reverse battery conditions. For applications
requiring under-voltage lock out (UVLO), such as PC standby,
the TinySwitch-II eliminates several components and saves
cost. TinySwitch-II is well suited for applications that require
constant voltage and constant current output. As
TinySwitch-II is always powered from the input high voltage, it
therefore does not rely on bias winding voltage. Consequently
this greatly simplifies designing chargers that must work down
to zero volts on the output.
7G
4/05

7페이지


구       성 총 24 페이지수
다운로드[ TNY263.PDF 데이터시트 ]

당사 플랫폼은 키워드, 제품 이름 또는 부품 번호를 사용하여 검색할 수 있는

포괄적인 데이터시트를 제공합니다.


구매 문의
일반 IC 문의 : 샘플 및 소량 구매
-----------------------------------------------------------------------

IGBT, TR 모듈, SCR 및 다이오드 모듈을 포함한
광범위한 전력 반도체를 판매합니다.

전력 반도체 전문업체

상호 : 아이지 인터내셔날

사이트 방문 :     [ 홈페이지 ]     [ 블로그 1 ]     [ 블로그 2 ]



관련 데이터시트

부품번호상세설명 및 기능제조사
TNY263

Low Power Off-line Switcher

Power Integrations
Power Integrations
TNY264

Low Power Off-line Switcher

Power Integrations
Power Integrations

DataSheet.kr       |      2020   |     연락처      |     링크모음      |      검색     |      사이트맵