DataSheet.es    


PDF AT45DB161E Data sheet ( Hoja de datos )

Número de pieza AT45DB161E
Descripción 16-Mbit DataFlash / 2.3V or 2.5V Minimum SPI Serial Flash Memory
Fabricantes Adesto 
Logotipo Adesto Logotipo



Hay una vista previa y un enlace de descarga de AT45DB161E (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! AT45DB161E Hoja de datos, Descripción, Manual

AT45DB161E
16-Mbit DataFlash (with Extra 512-Kbits), 2.3V or 2.5V Minimum
SPI Serial Flash Memory
Features
Single 2.3V - 3.6V or 2.5V - 3.6V supply
Serial Peripheral Interface (SPI) compatible
Supports SPI modes 0 and 3
Supports RapidSoperation
Continuous read capability through entire array
Up to 85MHz
Low-power read option up to 15MHz
Clock-to-output time (tV) of 6ns maximum
User configurable page size
512 bytes per page
528 bytes per page (default)
Page size can be factory pre-configured for 512 bytes
Two fully independent SRAM data buffers (512/528 bytes)
Allows receiving data while reprogramming the main memory array
Flexible programming options
Byte/Page Program (1 to 512/528 bytes) directly into main memory
Buffer Write
Buffer to Main Memory Page Program
Flexible erase options
Page Erase (512/528 bytes)
Block Erase (4KB)
Sector Erase (128KB)
Chip Erase (16-Mbits)
Program and Erase Suspend/Resume
Advanced hardware and software data protection features
Individual sector protection
Individual sector lockdown to make any sector permanently read-only
128-byte, One-Time Programmable (OTP) Security Register
64 bytes factory programmed with a unique identifier
64 bytes user programmable
Hardware and software controlled reset options
JEDEC Standard Manufacturer and Device ID Read
Low-power dissipation
400nA Ultra-Deep Power-Down current (typical)
3µA Deep Power-Down current (typical)
25µA Standby current (typical at 20MHz)
11mA Active Read current (typical)
Endurance: 100,000 program/erase cycles per page minimum
Data retention: 20 years
Complies with full industrial temperature range
Green (Pb/Halide-free/RoHS compliant) packaging options
8-lead SOIC (0.150" wide and 0.208" wide)
8-pad Ultra-thin DFN (5 x 6 x 0.6mm)
9-ball Ultra-thin UBGA (6 x 6 x 0.6mm)
11-ball Wafer Level Chip Scale Package
Die in Wafer Form
8782I–DFLASH–3/2016

1 page




AT45DB161E pdf
3. Memory Array
To provide optimal flexibility, the AT45DB161E memory array is divided into three levels of granularity comprising of
sectors, blocks, and pages. Figure 3-1, Memory Architecture Diagram illustrates the breakdown of each level and details
the number of pages per sector and block. Program operations to the DataFlash can be done at the full page level or at
the byte level (a variable number of bytes). The erase operations can be performed at the chip, sector, block, or page
level.
Figure 3-1. Memory Architecture Diagram
Sector Architecture
Sector 0a = 8 pages
4,096/4,224 bytes
Sector 0a
Sector 0b = 248 pages
126,976/130,944 bytes
Sector 1 = 256 pages
131,072 /135,168 bytes
Sector 2 = 256 pages
131,072/135,168 bytes
Sector 14 = 256 pages
131,072/135,168 bytes
Block Architecture
Block 0
Block 1
Block 2
Block 30
Block 31
Block 32
Block 33
Block 62
Block 63
Block 64
Block 65
8 Pages
Page Architecture
Page 0
Page 1
Page 6
Page 7
Page 8
Page 9
Page 14
Page 15
Page 16
Page 17
Page 18
Sector 15 = 256 pages
131,072/135,168 bytes
Block 510
Block 511
Block = 4,096/4,224 bytes
Page 4,094
Page 4,095
Page = 512/528 bytes
AT45DB161E
8782I–DFLASH–3/2016
5

5 Page





AT45DB161E arduino
programming of the page are internally self-timed and should take place in a maximum time of tEP. During this time, the
RDY/BUSY bit in the Status Register will indicate that the device is busy.
The device also incorporates an intelligent erase and programming algorithm that can detect when a byte location fails to
erase or program properly. If an erase or program error arises, it will be indicated by the EPE bit in the Status Register.
6.5 Main Memory Byte/Page Program through Buffer 1 without Built-In Erase
The Main Memory Byte/Page Program through Buffer 1 without Built-In Erase command combines both the Buffer Write
and Buffer to Main Memory Program without Built-In Erase operations to allow any number of bytes (1 to 512/528 bytes)
to be programmed directly into previously erased locations in the main memory array. With the Main Memory Byte/Page
Program through Buffer 1 without Built-In Erase command, data is first clocked into Buffer 1, and then only the bytes
clocked into the buffer are programmed into the pre-erased byte locations in main memory. Multiple bytes up to the page
size can be entered with one command sequence.
To perform a Main Memory Byte/Page Program through Buffer 1 using the standard DataFlash page size (528 bytes), an
opcode of 02h must first be clocked into the device followed by three address bytes comprised of two dummy bits,
12 page address bits (PA11 - PA0) that specify the page in the main memory to be written, and 10 buffer address bits
(BFA9 - BFA0) that select the first byte in the buffer to be written. After all address bytes are clocked in, the device will
take data from the input pin (SI) and store it in Buffer 1. Any number of bytes (1 to 528) can be entered. If the end of the
buffer is reached, then the device will wrap around back to the beginning of the buffer.
To perform a Main Memory Byte/Page Program through Buffer 1 using the binary page size (512 bytes), an opcode of
02h for Buffer 1 using must first be clocked into the device followed by three address bytes comprised of three dummy
bits, 12 page address bits (A20 - A9) that specify the page in the main memory to be written, and nine buffer address bits
(BFA8 - BFA0) that selects the first byte in the buffer to be written. After all address bytes are clocked in, the device will
take data from the input pin (SI) and store it in Buffer 1. Any number of bytes (1 to 512) can be entered. If the end of the
buffer is reached, then the device will wrap around back to the beginning of the buffer. When using the binary page size,
the page and buffer address bits correspond to a 21-bit logical address (A20-A0) in the main memory.
After all data bytes have been clocked into the device, a low-to-high transition on the CS pin will start the program
operation in which the device will program the data stored in Buffer 1 into the main memory array. Only the data bytes
that were clocked into the device will be programmed into the main memory.
Example: If only two data bytes were clocked into the device, then only two bytes will be programmed into main
memory and the remaining bytes in the memory page will remain in their previous state.
The CS pin must be deasserted on a byte boundary (multiples of eight bits); otherwise, the operation will be aborted and
no data will be programmed. The programming of the data bytes is internally self-timed and should take place in a
maximum time of tP (the program time will be a multiple of the tBP time depending on the number of bytes being
programmed). During this time, the RDY/BUSY bit in the Status Register will indicate that the device is busy.
The device also incorporates an intelligent programming algorithm that can detect when a byte location fails to program
properly. If a programming error arises, it will be indicated by the EPE bit in the Status Register.
6.6 Read-Modify-Write
A completely self-contained read-modify-write operation can be performed to reprogram any number of sequential bytes
in a page in the main memory array without affecting the rest of the bytes in the same page. This command allows the
device to easily emulate an EEPROM by providing a method to modify a single byte or more in the main memory in a
single operation, without the need for pre-erasing the memory or the need for any external RAM buffers. The
Read-Modify-Write command is essentially a combination of the Main Memory Page to Buffer Transfer, Buffer Write, and
Buffer to Main Memory Page Program with Built-in Erase commands.
To perform a Read-Modify-Write using the standard DataFlash page size (528 bytes), an opcode of 58h for Buffer 1 or
59h for Buffer 2 must be clocked into the device followed by three address bytes comprised of 2 dummy bits, 12 page
address bits (PA11 - PA0) that specify the page in the main memory to be written, and 10 byte address bits (BA9 - BA0)
that designate the starting byte address within the page to reprogram.
To perform a Read-Modify-Write using the binary page size (512 bytes), an opcode of 58h for Buffer 1 or 59h for Buffer 2
AT45DB161E
8782I–DFLASH–3/2016
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet AT45DB161E.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AT45DB16116-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB161-CC16-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB161-CI16-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation
AT45DB161-JC16-Megabit 2.7-volt Only Serial DataFlashATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar