DataSheet.es    


PDF ATmega3250V Data sheet ( Hoja de datos )

Número de pieza ATmega3250V
Descripción 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATmega3250V (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATmega3250V Hoja de datos, Descripción, Manual

Features
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
– On-Chip 2-cycle Multiplier
High Endurance Non-volatile Memory segments
– 32K Bytes of In-System Self-programmable Flash program memory
– 1K Bytes EEPROM
– 2K Bytes Internal SRAM
– Write/Erase cyles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture
Mode
– Real Time Counter with Separate Oscillator
– Four PWM Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and
Standby
I/O and Packages
– 54/69 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP
Speed Grade:
– ATmega325PV/ATmega3250PV:
0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATmega325P/3250P:
0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Temperature range:
– -40°C to 85°C Industrial
Ultra-Low Power Consumption
– Active Mode:
420 µA at 1 MHz, 1.8V
– Power-down Mode:
40 nA at 1.8V
– Power-save Mode:
750 nA at 1.8V
8-bit
Microcontroller
with 32K Bytes
In-System
Programmable
Flash
ATmega325P/V
ATmega3250P/V
Preliminary
8023F–AVR–07/09

1 page




ATmega3250V pdf
ATmega325P/3250P
The ATmega325P/3250P provides the following features: 32K bytes of In-System Programma-
ble Flash with Read-While-Write capabilities, 1K bytes EEPROM, 2K byte SRAM, 54/69 general
purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan,
On-chip Debugging support and programming, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, Universal Serial Inter-
face with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer
with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt sys-
tem to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-
save mode, the asynchronous timer, allowing the user to maintain a timer base while the rest of
the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules
except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip In-System re-Programmable (ISP) Flash allows the program memory to be repro-
grammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip Boot program running on the AVR core. The Boot program can
use any interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is updated,
providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmega325P/3250P is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded con-
trol applications.
The ATmega325P/3250P AVR is supported with a full suite of program and system develop-
ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit
Emulators, and Evaluation kits.
2.2 Comparison between ATmega325P and ATmega3250P
The ATmega325P and ATmega3250P differs only in memory sizes, pin count and pinout. Table
2-1 on page 5 summarizes the different configurations for the four devices.
Table 2-1. Configuration Summary
Device
ATmega325P
ATmega3250P
Flash
32K bytes
32K bytes
EEPROM
1K bytes
1K bytes
RAM
2K bytes
2K bytes
General Purpose
I/O Pins
54
69
8023F–AVR–07/09
5

5 Page





ATmega3250V arduino
ATmega325P/3250P
6. AVR CPU Core
6.1 Overview
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.
6.2 Architectural Overview
Figure 6-1. Block Diagram of the AVR Architecture
Data Bus 8-bit
Flash
Program
Memory
Instruction
Register
Instruction
Decoder
Control Lines
Program
Counter
Status
and Control
32 x 8
General
Purpose
Registrers
ALU
Interrupt
Unit
SPI
Unit
Watchdog
Timer
Analog
Comparator
Data
SRAM
EEPROM
I/O Module1
I/O Module 2
I/O Module n
I/O Lines
8023F–AVR–07/09
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATmega3250V.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATMEGA32508-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATmega3250A8-bit Atmel MicrocontrollerATMEL Corporation
ATMEL Corporation
ATMEGA3250P8-bit MicrocontrollerATMEL Corporation
ATMEL Corporation
ATmega3250PA8-bit Atmel MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar