DataSheet.es    


PDF ATmega644RFR2 Data sheet ( Hoja de datos )

Número de pieza ATmega644RFR2
Descripción 8-bit Microcontroller
Fabricantes ATMEL Corporation 
Logotipo ATMEL Corporation Logotipo



Hay una vista previa y un enlace de descarga de ATmega644RFR2 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! ATmega644RFR2 Hoja de datos, Descripción, Manual

ATmega2564/1284/644RFR2
Features
Network support by hardware assisted Multiple PAN Address Filtering
Advanced Hardware assisted Reduced Power Consumption
High Performance, Low Power AVR® 8-Bit Microcontroller
Advanced RISC Architecture
- 135 Powerful Instructions – Most Single Clock Cycle Execution
- 32x8 General Purpose Working Registers / On-Chip 2-cycle Multiplier
- Up to 16 MIPS Throughput at 16 MHz and 1.8V – Fully Static Operation
Non-volatile Program and Data Memories
- 256K/128K/64K Bytes of In-System Self-Programmable Flash
Endurance: 10’000 Write/Erase Cycles @ 125°C (25’000 Cycles @ 85°C)
- 8K/4K/2K Bytes EEPROM
Endurance: 20’000 Write/Erase Cycles @ 125°C (100’000 Cycles @ 25°C)
- 32K/16K/8K Bytes Internal SRAM
JTAG (IEEE std. 1149.1 compliant) Interface
- Boundary-scan Capabilities According to the JTAG Standard
- Extensive On-chip Debug Support
- Programming of Flash EEPROM, Fuses and Lock Bits through the JTAG interface
Peripheral Features
- Multiple Timer/Counter & PWM channels
- Real Time Counter with Separate Oscillator
- 10-bit, 330 ks/s A/D Converter; Analog Comparator; On-chip Temperature Sensor
- Master/Slave SPI Serial Interface
- Two Programmable Serial USART
- Byte Oriented 2-wire Serial Interface
Advanced Interrupt Handler and Power Save Modes
Watchdog Timer with Separate On-Chip Oscillator
Power-on Reset and Low Current Brown-Out Detector
Fully integrated Low Power Transceiver for 2.4 GHz ISM Band
- High Power Amplifier support by TX spectrum side lobe suppression
- Supported Data Rates: 250 kb/s and 500 kb/s, 1 Mb/s, 2 Mb/s
- -100 dBm RX Sensitivity; TX Output Power up to 3.5 dBm
- Hardware Assisted MAC (Auto-Acknowledge, Auto-Retry)
- 32 Bit IEEE 802.15.4 Symbol Counter
- SFD-Detection, Spreading; De-Spreading; Framing ; CRC-16 Computation
- Antenna Diversity and TX/RX control / TX/RX 128 Byte Frame Buffer
PLL synthesizer with 5 MHz and 500 kHz channel spacing for 2.4 GHz ISM Band
Hardware Security (AES, True Random Generator)
Integrated Crystal Oscillators (32.768 kHz & 16 MHz, external crystal needed)
I/O and Package
- 33 Programmable I/O Lines
- 48-pad QFN (RoHS/Fully Green)
Temperature Range: -40°C to 125°C Industrial
Ultra Low Power consumption (1.8 to 3.6V) for AVR & Rx/Tx: 10.1mA/18.6 mA
- CPU Active Mode (16MHz): 4.1 mA
- 2.4GHz Transceiver: RX_ON 6.0 mA / TX 14.5 mA (maximum TX output power)
- Deep Sleep Mode: <700nA @ 25°C
Speed Grade: 0 – 16 MHz @ 1.8 – 3.6V range with integrated voltage regulators
8-bit
Microcontroller
with Low Power
2.4GHz
Transceiver for
ZigBee and
IEEE 802.15.4
ATmega2564RFR2
ATmega1284RFR2
ATmega644RFR2
Applications
ZigBee® / IEEE 802.15.4-2011/2006/2003– Full and Reduced Function Device
General Purpose 2.4GHz ISM Band Transceiver with Microcontroller
RF4CE, SP100, WirelessHART, ISM Applications and IPv6 / 6LoWPAN
42073B-MCU Wireless-09/14
42073B-MCU Wireless-09/14
1

1 page




ATmega644RFR2 pdf
ATmega2564/1284/644RFR2
The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip ISP Flash allows the program memory to be reprogrammed in-system
trough an SPI serial interface, by a conventional nonvolatile memory programmer, or by
on on-chip boot program running on the AVR core. The boot program can use any
interface to download the application program in the application Flash memory.
Software in the boot Flash section will continue to run while the application Flash
section is updated, providing true Read-While-Write operation. By combining an 8 bit
RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega2564/1284/644RFR2 is a powerful microcontroller that provides a highly
flexible and cost effective solution to many embedded control applications.
The ATmega2564/1284/644RFR2 AVR is supported with a full suite of program and
system development tools including: C compiler, macro assemblers, program
debugger/simulators, in-circuit emulators, and evaluation kits.
3.2 Pin Descriptions
3.2.1 EVDD
3.2.2 DEVDD
3.2.3 AVDD
3.2.4 DVDD
3.2.5 DVSS
3.2.6 AVSS
3.2.7 Port B (PB7...PB0)
3.2.8 Port D (PD7...PD0)
3.2.9 Port E (PE7,PE5...PE0)
External analog supply voltage.
External digital supply voltage.
Regulated analog supply voltage (internally generated).
Regulated digital supply voltage (internally generated).
Digital ground.
Analog ground.
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port B output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port B also provides functions of various special features of the
ATmega2564/1284/644RFR2.
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each
bit). The Port D output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port D pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running.
Port D also provides functions of various special features of the
ATmega2564/1284/644RFR2.
Internally Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected
for each bit). The Port E output buffers have symmetrical drive characteristics with both
high sink and source capability. As inputs, Port E pins that are externally pulled low will
42073B-MCU Wireless-09/14
5

5 Page





ATmega644RFR2 arduino
ATmega2564/1284/644RFR2
7.4 Status Register
The Status Register contains information about the result of the most recently executed
arithmetic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the Status Register is updated after all ALU
operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and
more compact code. The Status Register is not automatically stored when entering an
interrupt routine and restored when returning from an interrupt. This must be handled by
software.
7.4.1 SREG – Status Register
Bit 7 6 5 4 3 2 1 0
$3F ($5F)
I
T H S V N Z C SREG
Read/Write RW RW RW RW RW RW RW RW
Initial Value
0
0
0
0
0
0
0
0
42073B-MCU Wireless-09/14
Bit 7 – I - Global Interrupt Enable
The global interrupt enable bit must be set (one) for the interrupts to be enabled. The
individual interrupt enable control is then performed in separate control registers. If the
global interrupt enable bit is cleared (zero), none of the interrupts are enabled
independent of the individual interrupt enable settings. The I-bit is cleared by hardware
after an interrupt has occurred, and is set by the RETI instruction to enable subsequent
interrupts.
Bit 6 – T - Bit Copy Storage
The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T bit as source
and destination for the operated bit. A bit from a register in the register file can be
copied into T by the BST instruction, and a bit in T can be copied into a bit in a register
in the register file by the BLD instruction.
Bit 5 – H - Half Carry Flag
The half carry flag H indicates a half carry in some arithmetic operations. See the
Instruction Set Description for detailed information.
Bit 4 – S - Sign Bit
The S-bit is always an exclusive or between the negative flag N and the two's
complement overflow flag V. See the Instruction Set Description for detailed
information.
Bit 3 – V - Two's Complement Overflow Flag
The two's complement overflow flag V supports two's complement arithmetics. See the
Instruction Set Description for detailed information.
Bit 2 – N - Negative Flag
The negative flag N indicates a negative result after the different arithmetic and logic
operations. See the Instruction Set Description for detailed information.
Bit 1 – Z - Zero Flag
The zero flag Z indicates a zero result after the different arithmetic and logic operations.
See the Instruction Set Description for detailed information.
Bit 0 – C - Carry Flag
The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction
Set Description for detailed information. Note that the status register is not automatically
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet ATmega644RFR2.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
ATmega644RFR28-bit MicrocontrollerATMEL Corporation
ATMEL Corporation

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar