DataSheet.es    


PDF MTD1312 Data sheet ( Hoja de datos )

Número de pieza MTD1312
Descripción Power MOSFET ( Transistor )
Fabricantes ON Semiconductor 
Logotipo ON Semiconductor Logotipo



Hay una vista previa y un enlace de descarga de MTD1312 (archivo pdf) en la parte inferior de esta página.


Total 11 Páginas

No Preview Available ! MTD1312 Hoja de datos, Descripción, Manual

MTD1312
Advance Information
Power MOSFET
25 Amps, 30 Volts
NChannel DPAK
This Power MOSFET is designed to withstand high energy in the
avalanche and commutation modes. The energy efficient design also
offers a draintosource diode with a fast recovery time. Designed for
low voltage, high speed switching applications in power supplies,
converters, and PWM motor controls, these devices are particularly
well suited for bridge circuits where diode speed and commutating
safe operating areas are critical and offer additional safety margin
against unexpected voltage transients.
SourcetoDrain Diode Recovery Time Comparable to a
Discrete Fast Recovery Diode
Diode Is Characterized for Use In Bridge Circuits
MAXIMUM RATINGS (TC = 25°C unless otherwise noted)
Parameter
Symbol Value
DraintoSource Voltage
DraintoGate Voltage (RGS = 1.0 MΩ)
GatetoSource Voltage
Continuous
NonRepetitive (tp 10 ms)
VDSS
VDGR
VGS
VGSM
30
30
± 20
± 20
Operating and Storage Temperature Range
TJ, Tstg
55 to
150
Unit
Vdc
Vdc
Vdc
Vpk
°C
This document contains information on a new product. Specifications and information
herein are subject to change without notice.
http://onsemi.com
25 AMPERES
30 VOLTS
RDS(on) = 16 mΩ
NChannel
D
G
S
MARKING
DIAGRAM
12
3
4 CASE 369A
DPAK
STYLE 2
Y = Year
WW = Work Week
MTD1312 = Device Code
YWW
MTD
1312
PIN ASSIGNMENT
4
Drain
1 23
Gate Drain Source
ORDERING INFORMATION
Device
Package
Shipping
MTD1312T4
DPAK
2500 Tape & Reel
© Semiconductor Components Industries, LLC, 2006
August, 2006 Rev. 2
1
Publication Order Number:
MTD1312/D

1 page




MTD1312 pdf
MTD1312
POWER MOSFET SWITCHING
Switching behavior is most easily modeled and predicted
by recognizing that the power MOSFET is charge
controlled. The lengths of various switching intervals (Δt)
are determined by how fast the FET input capacitance can
be charged by current from the generator.
The published capacitance data is difficult to use for
calculating rise and fall because draingate capacitance
varies greatly with applied voltage. Accordingly, gate
charge data is used. In most cases, a satisfactory estimate of
average input current (IG(AV)) can be made from a
rudimentary analysis of the drive circuit so that
t = Q/IG(AV)
During the rise and fall time interval when switching a
resistive load, VGS remains virtually constant at a level
known as the plateau voltage, VSGP. Therefore, rise and fall
times may be approximated by the following:
tr = Q2 x RG/(VGG VGSP)
tf = Q2 x RG/VGSP
where
VGG = the gate drive voltage, which varies from zero to VGG
RG = the gate drive resistance
and Q2 and VGSP are read from the gate charge curve.
During the turnon and turnoff delay times, gate current is
not constant. The simplest calculation uses appropriate
values from the capacitance curves in a standard equation for
voltage change in an RC network. The equations are:
td(on) = RG Ciss In [VGG/(VGG VGSP)]
td(off) = RG Ciss In (VGG/VGSP)
The capacitance (Ciss) is read from the capacitance curve at
a voltage corresponding to the offstate condition when
calculating td(on) and is read at a voltage corresponding to the
onstate when calculating td(off).
At high switching speeds, parasitic circuit elements
complicate the analysis. The inductance of the MOSFET
source lead, inside the package and in the circuit wiring
which is common to both the drain and gate current paths,
produces a voltage at the source which reduces the gate drive
current. The voltage is determined by Ldi/dt, but since di/dt
is a function of drain current, the mathematical solution is
complex. The MOSFET output capacitance also
complicates the mathematics. And finally, MOSFETs have
finite internal gate resistance which effectively adds to the
resistance of the driving source, but the internal resistance
is difficult to measure and, consequently, is not specified.
The resistive switching time variation versus gate
resistance (Figure 9) shows how typical switching
performance is affected by the parasitic circuit elements. If
the parasitics were not present, the slope of the curves would
maintain a value of unity regardless of the switching speed.
The circuit used to obtain the data is constructed to minimize
common inductance in the drain and gate circuit loops and
is believed readily achievable with board mounted
components. Most power electronic loads are inductive; the
data in the figure is taken with a resistive load, which
approximates an optimally snubbed inductive load. Power
MOSFETs may be safely operated into an inductive load;
however, snubbing reduces switching losses.
3500
VDS = 0 V VGS = 0 V
3000 Ciss
2500
TJ = 25°C
2000
Crss
1500
Ciss
1000
Coss
500
Crss
0
−10 −5.0 0 5.0 10 15 20 25
VGS VDS
VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 7. Capacitance Variation
30
http://onsemi.com
5

5 Page





MTD1312 arduino
MTD1312
PACKAGE DIMENSIONS
DPAK
CASE 369A13
ISSUE AA
B
VR
T
SEATING
PLANE
C
E
S
F
4
1 23
A
K
J
LH
D 2 PL
G 0.13 (0.005) M T
U
Z
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
INCHES
DIM MIN MAX
A 0.235 0.250
B 0.250 0.265
C 0.086 0.094
D 0.027 0.035
E 0.033 0.040
F 0.037 0.047
G 0.180 BSC
H 0.034 0.040
J 0.018 0.023
K 0.102 0.114
L 0.090 BSC
R 0.175 0.215
S 0.020 0.050
U 0.020 −−−
V 0.030 0.050
Z 0.138 −−−
MILLIMETERS
MIN MAX
5.97 6.35
6.35 6.73
2.19 2.38
0.69 0.88
0.84 1.01
0.94 1.19
4.58 BSC
0.87 1.01
0.46 0.58
2.60 2.89
2.29 BSC
4.45 5.46
0.51 1.27
0.51 −−−
0.77 1.27
3.51 −−−
STYLE 2:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN
Thermal Clad is a registered trademark of the Bergquist Company.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81357733850
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MTD1312/D

11 Page







PáginasTotal 11 Páginas
PDF Descargar[ Datasheet MTD1312.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MTD1312Power MOSFET ( Transistor )ON Semiconductor
ON Semiconductor

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar